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Abstract
Taking account of the contribution of spin–orbit splitting, the energy
band of GaN/InGaN quantum wells (QWs) has been calculated. For the
quadratic electro-optic effect (QEOE), the resonant third-order nonlinear optical
susceptibility due to the interband transition of the mode, whose polarization is
parallel to the [0 0 1] direction of the QWs, has been analysed as a function of
the well width and the concentration of In.

1. Introduction

Recently, GaN-based semiconductor material and devices have caused great interest in people
because of their many advantages, for example wide band gap, high electron saturated drift
velocity and great thermal conductivity [1–5]. Among them, the quantum-confined structures,
including quantum wells, wires and dots, are very active, in which the carriers are confined
in one, two and three dimensions correspondingly. The discrete energy levels, resulting from
the quantum confinement effect, cause many unique physical properties. Compared to bulk
material, the nonlinear optical effects in GaN/InGaN quantum wells are stronger. Although
there have been some experimental reports [6–9], it is important and significant to calculate the
third-order nonlinear optical susceptibility of the GaN-based QWs.

As we all know, there are two kinds of transition processes occurring in semiconductor
quantum wells. Many studies of conduction intraband transitions (the transition between
two different subbands in the conduction band) have been reported [10, 11]. However, to
light-emitting diodes (LEDs) and laser diodes (LDs), intersubband transitions (the transitions
between a valence subband and a conduction subband) are more important. Different from
GaAs-based quantum wells [12, 13], the spin–orbit split-off energy of GaN/InGaN QWs is very
small and similar to the energy difference between valence subbands. So, for GaN/InGaN QWs,
the contribution of spin–orbit splitting cannot be neglected in the calculation of the valence band
structure and nonlinear optical susceptibility due to intersubband transitions. In this paper, to
understand the impacts of structure and material on nonlinear optical effects, the third-order
nonlinear optical susceptibility due to the intersubband transition for the parallel mode in the
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Figure 1. The structure of GaN/InGaN QWs.

GaN/InGaN quantum wells, including the contribution of the spin–orbit splitting, has been
calculated as a function of the well width and the concentration of the material In.

2. Model and theory

The structure of the GaN/InGaN QWs used in this paper is shown in figure 1. Because of
the implantation of the material In, the energy gap of InGaN is smaller than GaN and thus
the InGaN layers form potential wells. Since the potential barrier GaN layer between two
neighbouring wells is wide enough, the wavefunctions in the wells will not be overlapped and
the multiple quantum wells can be treated as a single quantum well (QW).

Using the approximation of effective mass [14, 15], the wavefunction near the � point in
the first Brillouin zone of the QW can be expanded as:

�(r) =
∑

n

Un(r)Fn(r). (1)

Here Fn(r) is the slowly-varying envelope function and Un(r) is the Bloch function. For
the holes in the valence band, Un(r) corresponds to six band-edge wavefunctions, |vn〉 (n =
1, 2, 3, . . . , 6). For the electrons in the conduction band, Ui(r) = |C〉, and |C〉 is the ground-
state wavefunction of electrons. In this way, the effective mass equations of the electrons and
holes can be obtained.

With the contribution of spin–orbit splitting, the holes of the valence band in the
GaN/InGaN QW are divided into three types: (i) the heavy holes, which denote that the value
of ∂2 E/∂2k and the corresponding effective masses are large; (ii) the light holes, which denote
that the values of ∂2 E/∂2k and the corresponding effective masses are small; (iii) the spin–
orbit split-off holes, which are generated by the interaction between the magnetic torque from
the spin of valence electrons and the magnetic field from the orbits of other valence electrons.
Considering the direction of spin, there are three two-fold degenerated energy levels at the top
of the valence band. Thus the Hamiltonian of the valence band can be written as the 6 × 6
Luttinger–Kohn matrix [16, 17]:

H0(kx, ky, kz)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+ C i√
2
C −i

√
2B B 0

C∗ A− − i√
2
(A+ − A−) i

√
3
2 C 0 b

− i√
2
C∗ i√

2
(A+ − A−) −� + 1

2 (A+ + A−) 0 i
√

3
2 C i

√
2B

i
√

2B∗ −i
√

3
2 C∗ 0 −� + 1

2 (A+ + A−) i√
2
(A+ − A−) i√

2
C

B∗ 0 −i
√

3
2 C∗ − i√

2
(A+ − A−) A− −C

0 B∗ −i
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where � denotes the split of the spin–orbit coupling. A+, A−, B and C have the forms:

A± = − h̄2

2m0
[(k2

x + k2
y)(γ1 ± γ2) + k2

z (γ1 ∓ 2γ2)]

B = −
√

3h̄2

2m0
[γ2(k

2
x − k2

y) − i2γ3kxky]

C =
√

3h̄2

m0
γ3(ikx + ky)kz

(3)

where γ1, γ2 and γ3 are Luttinger parameters. Since there is no confinement in the directions
of x and y, the method of separation of variables can be used and the envelope functions of the
holes can be rewritten as:

Fv(kx, ky, z) = 1√
Lx L y

ei(kx x+ky y) fv(z); (4)

here Lx and L y are the normalized constants, which denote the length of the QW in the
directions of x and y, respectively.

Thus the effective mass equation for the valence band is:

H0(kx, ky, z)[ fm(z)] = E(kx, ky, z)[ fm(z)], (5)

where m = HH↑, LH↑, SO↑, SO↓, LH↓, HH↓ denotes the terms for heavy holes, light holes
and the spin–orbit split-off holes with opposite spins. Near the top of the valence band, fm(z)
can be expanded as:

fm(z) =
√

2

L

N∑

n=1

cm
n sin

nπz

L
. (6)

As shown in figure 1, L denotes the width of the QW. Combining (5) with (6), the eigenvalue
equation can be obtained as:

[H ][Cm] = E[Cm], (7)

where [H ] is a 6N × 6N matrix obtained from (2) and the eigenfunction is:

[Cm] = (CH H↑, CL H↑, CSO↑, CSO↓, CL H↓, CH H↓)T, (8)

Ci = (Ci
1, Ci

2, Ci
3 . . . Ci

N )T. (9)

Thus, by solving the eigenvalue problem, the energy structure of the holes near the top of the
valence band can be obtained.

As for the electrons near the bottom of the conduction band, it is simpler than the situation
for holes. After the effective mass equation is given, the method of separation of variables
can also be used on the slow envelope wavefunction of the electrons, since the QW forms
discrete quantized energy levels in the direction of z and the electrons are confined only in the
z direction. Setting the energy level at the top of the valence band to be zero, the wavefunction
and the energy at the � point for electrons at the bottom of the conduction band are:

fn(kx, ky, z) = 1√
Lx L y

exp[i(kx x + ky y)]
√

2

L
sin

nπz

L
, (10)

E = Eg + h̄2(k2
x + k2

y)

2m∗
e

+ h̄2n2π2

2m∗
e L2

, (11)

here Eg is the energy gap, and m∗
e is the effective mass of the electrons.
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According to the selection rules of the transition between the valence and conduction
bands, the transition between the valence band and the conduction subband can exist only when
�n = 0. Considering that the envelope function varies slowly, the element of the transition
matrix, whose quantum number is n, is:

〈
rp
〉
n
=
∫

�∗
c (r)rp�v(r) d3r =

6∑

i=1

〈c|rp|vi 〉
∫

f ∗
c (z) f i

v (z) dz =
6∑

i=1

〈c|rp|vi 〉Ci
n. (12)

Note that [18]:

〈c|rp|vi 〉 = 〈e, j ′|rp|rq, j〉 = h̄

Ec − Ev

√
Eg(Eg + �)

2m∗
e(Eg + 2

3�)
δ j, j ′δp,q . (13)

In (12) and (13), rp,q=1,2,3 = x, y, z, δ j, j ′δp,q denotes that there is no transition
between different directions and different spins. The band-edge wavefunctions of the holes
(|3/2,±3/2〉, |3/2,±1/2〉, |1/2,±1/2〉) are shown in [12]. Taking them into (13), and setting

h̄

Ec − Ev

√
Eg(Eg + �)

2m∗
e(Eg + 2

3�)
= 	, (14)

the matrix element of the dipole transition in the z direction between the nth subband of the
valence band and the nth subband of the conduction band can be written as:

ze↑,v =
(

−i

√
2

3
C2

n + C3
n√
3

)
	, ze↓,v =

(
iC4

n√
3

+
√

2

3
C5

n

)
	. (15)

So far, the energy structure and the wavefunctions of holes near the top of the valence
band and electrons near the bottom of the conduction band can be obtained. If we know the
expression of the third-order nonlinear optical susceptibility, it is easy to get the impacts of the
structure and the material on it.

The original expression for third-order nonlinear optical susceptibility is [19]:

χ
(3)
μαβγ (−ωσ ; ω1, ω2, ω3) = −e4

6ωσ ω1ω2ω3h̄3m4V

∑

p

∑

a,b,c,d

∑

k

f (a, k)

× pμ

ab pα
bc pβ

cd pγ

da

(	ba − ω1 − ω2 − ω3)(	ca − ω1 − ω2)(	da − ω1)
(16)

where ω1, ω2, ω3 are the frequencies of the incident radiation and α, β , γ are their respective
polarizations, and p represents a dipole matrix element. The polarization of the response is μ

and its frequency is ωσ = ω1 + ω2 + ω3.
∑

a,b,c,d represents a summation over superlattice
bands, and

∑
k represents a summation over the Brillouin zone. f (a, k) is the occupation

number of states in the ground state, and 	ba = (Eb − Ea)/h̄ − iγba.
∑

p represents a sum
over permutations of the pairs (μ,−ωσ ), (α, ω1), (β, ω2)(γ, ω3). In this paper, the dc field
can be considered as a coherent superposition of the photon with zero frequency. The dc-
Kerr effect and the electron-absorption process can be described by the third-order nonlinear
susceptibility: χ

(3)

QEOE(ω) = Re χ(3)(−ω, 0, 0, ω), χ
(3)
EA (ω) = Im χ(3)(−ω, 0, 0, ω). For the

mode parallel to the [0 0 1] direction of the QW, the third-order nonlinear optical susceptibility
χ(3)(−ω, 0, 0, ω), due to the transitions from the valence band to the conduction band, can be
obtained from formula (16), shown as follows [12, 13]:
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Figure 2. The energy of the holes as a function of k⇀ vertical to the z-direction of the MQWs.

χ(3)(−ω, 0, 0, ω) = e

L

(
e

2h̄

)3 ∫ dk2

(2π)2

×
∑

v,v′=H H,L H,SO

〈c|z|v〉〈v|z|c′〉〈c′|z|v′〉〈v′ |z|c〉(ρ0
c − ρ0

v )
1

ω − μc′,v

×
(

1

ω + μ∗
v,v′

× 1

ω − μc,v
+ 1

ω + μ∗
c,c′

× 1

ω − μc′,v′

)
. (17)

The suffixes c, c′ denote the two-fold degenerated state with opposite spins in the conduction
band and v, v′ denote one of the three two-fold degenerate states with opposite spins in the
valence band. ρ0

c and ρ0
v are the quasi-Fermi energies, ρ0

c = 0.15 eV and ρ0
v = 0.05 eV. μcv(k)

is defined as:

μcv(k) = Ec(k) − Ev(k)

h̄
− iγcv, (18)

where Ec(k) and Ev(k) are the energies of the electrons in the conduction band and the holes
in the valence band, γcv = 1/τcv, τcv = (τcc + τvv)/2, and τcc and τvv are the relaxation times
of the electrons and holes and can be assumed to be τcc = τvv = 10−13 s.

3. Results and discussions

Setting the concentration of In to be 0.05, the parameters of the potential well material InGaN
are given in table 1 [20].

After defining the energy at the top of the valence band to be zero, the energy structure of
the holes near the top of the valence band is shown in figure 2, while the width of the QW is set
as 7.0 nm and the concentration of In as 0.05.

At room temperature, the electrons and holes in the QW are distributed mainly near the
bottom of the conduction band and the top of the valence band, respectively. Most of the
carriers are near the state n = 1, k⇀ = 0. According to the rules of selection, the intersubband
transition can be described as the transition from the HH1, LH1 or SO1 valence subband to the
first conduction subband. Thus the n in (15) is equal to 1. Taking the wavefunctions into (17),
the modulus, real and imaginary parts of χ

(3)
QEOE can be obtained, shown in figure 3.

5
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Figure 3. The modulus, real part and imaginary part of χ
(3)
QEOE.

(a)

(b)

Figure 4. The modulus of χ
(3)
QEOE with different well width.
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(a)

(b)

Figure 5. The real part of χ
(3)
QEOE with different well width.

Table 1. The parameters of InGaN that are used.

Parameters In0.05Ga0.95N

Length of primitive cell: a0 (Å) 4.50
Forbidden gap: Eg (eV) 3.088 55
Effective mass: m∗

e 0.148 5
Luttinger parameters:

γ1 2.722 5
γ2 0.775 5
γ3 1.126 5

From (8), (9) and (15), it can easily be seen that for the mode, whose polarization is parallel
to the [0 0 1] direction of the QW, the HH1 state has no contribution to the transition process.
From figure 3, it seems that there is only one peak in each one of the three curves. But this

7
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(a)

(b)

Figure 6. The imaginary part of χ
(3)
QEOE with different well width.

is not true. In fact, near the frequency of 3.15 eV, there is another peak in each curve, which
is too tiny to be seen. The great difference between the values of the two peaks results from
different transition probabilities. Since the tiny peak is due to the transition from the first light
hole valence subband LH1 to the first conduction subband e1 while the large peak is due to the
transition from the first spin–orbit split-off hole valence subband SO1 to e1, the great difference
shows that the mode with polarization parallel to the [0 0 1] direction of the GaN/InGaN QW is
more sensitive to the transition from SO1 than LH1 to e1. From this point, some spin-dependent
dynamic research can be performed in the future.

Furthermore, to understand the impacts of the material and structure of the QW on the
nonlinear optical effects, the modulus, real and imaginary parts are given as functions of the
well width and the concentration of In, respectively.

As the concentration of In is fixed at 0.05, the modulus, real and imaginary parts of χ
(3)

QEOE
are shown in figures 4–6 with varying well width from 6.5 to 8.5 nm. There are two peaks

8
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(a)

(b)

Figure 7. The modulus of χ
(3)
QEOE with different concentrations of In.

in each curve. However, the tiny peak near the low frequency is too small to be seen, which
is smaller than that near the high frequency by over one order of magnitude. So, with the
frequency confined from 3.13 to 3.17 eV, the tiny peaks, due to the transition from LH1 to
e1, are magnified in figures 4(b), 5(b) and 6(b). From both (a) and (b) of figures 4–6, with
an increase in well width, the position of the peaks generates red-shift. This indicates that the
energy difference between LH1 or SO1 and e1 decreases as the well width increases. On the
other hand, the value of the peaks, which are due to the transition from SO1 to e1, decreases
with an increase in well width. Because of the great difference in the value of the two peaks, it
can be seen that the QEOE will increase with an decrease in well width. This indicates that with
the increase in well width, the quantum confinement effect and correspondingly the third-order
nonlinear optical effect will become weaker.

In contrast, from figures 4(b), 5(b) and 6(b), the value of the peaks, due to the transition
from LH1 to e1, increases as the well width increases. This is an interesting phenomenon and
we think it results from the following reasons. In the GaN/InGaN QW, the discrete quantized

9
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(a)

(b)

Figure 8. The real part of χ
(3)
QEOE with different concentrations of In.

energy levels are formed in the z direction, while the particles with effective masses move freely
in the x–y plane. For the holes of the valence band, the motions in the x, y and z directions
are coupled mutually and every valence subband has a contribution for HH, LH and SO. Only
at kx = ky = 0, the wavefunction of each subband tends to that of the corresponding hole
state. The GaN/InGaN QW is Type I QW and the carriers are distributed mainly near the �

point (k = 0). However, in a real situation, the wavevectors parallel to the layer are not zero
(kx 
= 0, ky 
= 0), which results in the coupling of HH and LH. This can be seen from figure 2,
in which the curvature of the LH1 subband near the frequency of 2.5π/a0 becomes positive.
The HH1 holes have much effect on the transition process from LH1 to e1 and the influence
becomes greater with decreasing well width. Since HH1 has no contribution to the third-order
nonlinear susceptibility of the mode with the polarization parallel to the [0 0 1] direction of the
QW, the value of the peaks due to the transition from LH1 to e1 decreases with decreasing well
width.

10
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(a)

(b)

Figure 9. The imaginary part of χ
(3)
QEOE with different concentrations of In.

In addition, setting the width of the potential well to be 7 nm, the modulus, real and
imaginary parts are shown with varying concentrations of the semiconductor material In.

From figures 7 to 9, it can be seen easily that, with an increase in the concentration of
In, the peaks generate red-shift and become bigger. The red-shift indicates that the energy
difference between LH1 or SO1 and e1 becomes small as the concentration of In increases.
In addition, the increase in the peak values shows that, within a certain range, the quantum
confinement effect, and correspondingly the third-order nonlinear optical effects, will become
stronger with an increase in the concentration of In.

4. Conclusions

Including the contribution of the spin–orbit splitting, the energy band structure has been
calculated. Then the third-order nonlinear optical susceptibility for the quadratic electro-
optic effect due to the intersubband transition of the mode, whose polarization is parallel to
the [0 0 1] direction of the QW, has been analysed. The results show that the spin–orbit split-

11
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off holes contribute more to the susceptibility than the light holes. With the increase in the well
width and the concentration of In, the energy difference between LH1 or SO1 and e1 becomes
smaller and the nonlinear susceptibility generates red-shift correspondingly. On the other hand,
with the increase in the well width, the values of the peaks due to the transition from SO1
to e1 decrease while those due to LH1 to e1 increase, which results from the strong coupling
between HH1 and LH1. With the increase in the concentration of In, the values of the peaks
due to the transitions from both LH1 and SO1 to e1 increase. The results are significant for
studying the competition between different modes in the QW and are useful for designing new
semiconductor QW optoelectronic devices.
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